The florigen genes FT and TSF modulate lateral shoot outgrowth in Arabidopsis thaliana.
نویسندگان
چکیده
Successful sexual reproduction of a plant with prolific seed production requires appropriate timing of flowering and concomitant change of architecture (e.g. internode elongation and branching) to facilitate production of the optimal number of flowers while enabling continued resource production through photosynthesis. Florigen is the prime candidate for a signal linking the two processes. Growth analysis of lateral shoots in mutants of FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF) revealed a delay in the onset of outgrowth and a reduction of the growth rate in ft plants in long-day (LD) conditions and in tsf plants in short-day (SD) conditions. Thus, as in the case of floral transition, FT and TSF play dominant roles in LD and SD conditions, respectively, in the promotion of lateral shoot development. Differential expression patterns of the two genes were in good agreement with their differential roles both in the floral transition and in lateral shoot development under contrasting photoperiod conditions. By manipulating florigen production after bolting of the primary shoot, it was shown that florigen promotes lateral shoot growth independently of its effect on the floral transition of the primary shoot. Analysis of growth and gene expression in lateral shoots of the mutants suggests that the loss of florigen leads to a reduced rate of flower formation on lateral shoots. Together, we propose that the two florigen genes are an important key to linking the floral transition and lateral shoot development to maximize the reproductive success of a plant.
منابع مشابه
ABA-dependent control of GIGANTEA signalling enables drought escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thaliana
One strategy deployed by plants to endure water scarcity is to accelerate the transition to flowering adaptively via the drought escape (DE) response. In Arabidopsis thaliana, activation of the DE response requires the photoperiodic response gene GIGANTEA (GI) and the florigen genes FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF). The phytohormone abscisic acid (ABA) is also required for the...
متن کاملFlorigens and antiflorigens: a molecular genetic understanding.
Florigens, the leaf-derived signals that initiate flowering, have been described as 'mysterious', 'elusive' and the 'Holy Grail' of plant biology. They are synthesized in response to appropriate photoperiods and move through the phloem tissue. It has been proposed that their composition is complex. The evidence that flowering locus T (FT) protein and its paralogue twin sister of FT (TSF) act as...
متن کاملFLOWERING LOCUS T has higher protein mobility than TWIN SISTER OF FT
In plants, successful reproduction requires the proper timing of flowering under changing environmental conditions. Arabidopsis FLOWERING LOCUS T (FT), which encodes a proposed phloem-mobile florigen, has a close homologue, TWIN SISTER OF FT (TSF). During the vegetative phase, TSF shows high levels of expression in the hypocotyl before FT induction, but the tsf mutation does not have an apparen...
متن کاملBRANCHED1 interacts with FLOWERING LOCUS T to repress the floral transition of the axillary meristems in Arabidopsis.
Plant architecture shows a large degree of developmental plasticity. Some of the key determinants are the timing of the floral transition induced by a systemic flowering signal (florigen) and the branching pattern regulated by key factors such as BRANCHED1 (BRC1). Here, we report that BRC1 interacts with the florigen proteins FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF) but not with TERMI...
متن کاملGIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS.
Modulation of the transition to flowering plays an important role in the adaptation to drought. The drought-escape (DE) response allows plants to adaptively shorten their life cycle to make seeds before severe stress leads to death. However, the molecular basis of the DE response is unknown. A screen of different Arabidopsis (Arabidopsis thaliana) flowering time mutants under DE-triggering cond...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant & cell physiology
دوره 54 3 شماره
صفحات -
تاریخ انتشار 2013